Cardiac-specific overexpression of cyclin-dependent kinase 2 increases smaller mononuclear cardiomyocytes.
نویسندگان
چکیده
Cyclin-dependent kinase 2 (cdk2) plays a critical role in the G1- to S-phase checkpoint of the cell cycle. Adult cardiomyocytes are believed to withdraw from the cell cycle. To determine whether forced overexpression of cdk2 results in altered cell-cycle regulation in the adult heart, we generated transgenic mice specifically overexpressing cdk2 in hearts. Transgenic hearts expressed high levels of both cdk2 mRNA and catalytically active cdk2 proteins. Cdk2 overexpression significantly increased the levels of cdk4 and cyclins A, D3, and E. There was an increase in both DNA synthesis and proliferating cell nuclear antigen levels in the adult transgenic hearts. The ratio of heart weight to body weight in cdk2 transgenic mice was significantly increased in neonatal day 2 but not in adults compared with that of wild-type mice. Analysis of dispersed individual adult cardiomyocytes showed a 5.6-fold increase in the proportion of smaller mononuclear cardiomyocytes in the transgenic mice. Echocardiography revealed that transgenic heart was functionally normal. However, adult transgenic ventricles expressed beta-myosin heavy chain and atrial natriuretic factor. Surgically induced pressure overload caused an exaggerated maladaptive hypertrophic response in transgenic mice but did not change the proportion of mononuclear cardiomyocytes. The data suggest that overexpression of cdk2 promotes smaller, less-differentiated mononuclear cardiomyocytes in adult hearts that respond in an exaggerated manner to pressure overload.
منابع مشابه
SGK1-Sensitive Regulation of Cyclin-Dependent Kinase Inhibitor 1B (p27) in Cardiomyocyte Hypertrophy.
BACKGROUND/AIMS The serum- and glucocorticoid-inducible kinase SGK1 participates in the orchestration of cardiac hypertrophy and remodeling. Signaling linking SGK1 activity to cardiac remodeling is, however, incompletely understood. SGK1 phosphorylation targets include cyclin-dependent kinase inhibitor 1B (p27), a protein which suppresses cardiac hypertrophy. The present study explored how effe...
متن کاملEssential roles for G1cyclin-dependent kinase activity in development of cardiomyocyte hypertrophy.
Although cardiomyocytes undergo terminal differentiation soon after birth, irreversibly withdrawing from the cell cycle, growth stimulation induces cell hypertrophy. Such growth stimulation is also responsible for the upregulation of G1 cyclins and cyclin-dependent kinase (CDK) activity in proliferating cells. We sought to determine whether G1 CDK activity is involved in the hypertrophy of rat ...
متن کاملForced expression of the cyclin B1-CDC2 complex induces proliferation in adult rat cardiomyocytes.
Repair of the mature mammalian myocardium following injury is impaired by the inability of the majority of cardiomyocytes to undergo cell division. We show that overexpression of the cyclin B1-CDC2 (cell division cycle 2 kinase) complex re-initiates cell division in adult cardiomyocytes. Thus strategies targeting the cyclin B1-CDC2 complex might re-initiate cell division in mature cardiomyocyte...
متن کاملCyclin D1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice.
D-type cyclin/cyclin-dependent kinase (CDK) complexes regulate transit through the restriction point of the cell cycle, and thus are required for the initiation of DNA synthesis. Transgenic mice which overexpress cyclin D1 in the heart were produced to determine if D-type cyclin deregulation would alter myocardial development. Cyclin D1 overexpression resulted in a concomitant increase in CDK4 ...
متن کاملChromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish
The zebrafish possesses a remarkable capacity of adult heart regeneration, but the underlying mechanisms are not well understood. Here we report that chromatin remodelling factor Brg1 is essential for adult heart regeneration. Brg1 mRNA and protein are induced during heart regeneration. Transgenic over-expression of dominant-negative Xenopus Brg1 inhibits the formation of BrdU+/Mef2C+ and Tg(ga...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 88 4 شماره
صفحات -
تاریخ انتشار 2001